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HIGH ORDER FINITE DIFFERENCE METHODS. MULTIDIMENSIONAL LINEAR.

PROBLEMS AND CURVILINEAR COORDINATES

JAN NORDSTR()M* AND MARN H. CARPENTER t

Abstract. Boundary and interface conditions are derived for high order finite difference methods applied

to mult, idimensional linear problems in curvilmear coordinates. The boundary and interface conditious lead

to conservative schelnes and strict, and strong stability provided that certain metric conditions are met.

Key words, high-order finite-difference numerical stability, interface conditions, summation-by-parl.s.

variable coefficient

Subject classification. Applied and Numerical Mathematics

1. Introduetlon. Phenomena that. require an accurate description of high frequency variation in space

for long times occur in many important applications such as electromagnetics, acoustics (all cases of wave

propagation), and direct simulation of turbulent and transitional flow; see for example [1]-[6]. Strictly stable

high order finite difference methods are well suited for these types of problems (see [7]-[16]) because they

guarantee accurate results with bounded error growth in time for realistic meshes.

Most of the development for these types of methods has considered constant coefficient problems on a

Cartesian mesh. In [17], [18] stable and conservative boundary and interface conditions were derived for

the one-dimensional constan! coefficient Euler and Navier-Stokes equations on multiple domains. A similar

technique was used in [19], [20], and [21] for Chebyshev spectral methods.

In this paper we extend the constant coefficient analysis in [17], [18] to scalar multidimensional linear

problems in curvilinear coordinates including block interfaces. Related previous work includes investigations

of the metric derivatives in non-smooth meshes (see [22], [23]) and the treatment of parabolic and hyperbolic

systems in curvilinear coordinates on a single domain [14].

The rest. of this paper will proceed as follows. Section 2, will give some basic definitions. Section 3

presents the I D difference operators that form the basis of the multidimensional approxilnation treatment.

Sect.ion 4 defines the linear model problem and discusses well-posedness. Section 5 provides an investigation

of the discrete problem. Section 6 illustrates numerical experiments and in Section 7 we summarize and

draw conclusions.

2. Definitions. (:onsider the linear initial boundary value problem

u,t = P(x.l)w+(iF(._',t) ,xE_ ,l _>0,

(2.1) tt, = df(x) ,,rE f_ ,t = 0,

L,,u, = dg(l) ,.r E F ,t _> O,

where f ) is the differential operator, L(, is the boundary operator, [2 is the domain and F is the domain

boundary. The forcing function 5/:, lhe initial function dJ', and the I)oundary (tata d!/ are the data of the
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problem; u, denotes the difference between a solution with data f, F, g and one with data f + 5f, F + _F,

g+@.

The semi-discrete version of (2.1) is

(a,i)t = Q(xi,t),,j +SFj(t) ,x i E [2 ,t > 0,

(2.2) wj = 5fj ,xj E Q ,t = 0

LDWj = @(t) ,xj E F ,t >_ O,

where Q is the difference operator approximating the differential operator P, 8Fj is the forcing function, 5fj

the initial function, LD tile discrete boundary operator where numerical boundary conditions are included,

and (fg the boundary data. It is assumed that (2.2) is a consistent approximation of (2.1).

2.1. Well-posedness and stability. There are many concepts of well-posedness and stability; see

[24]. Here we consider the following definitions.

DEFINITION I. Problem (2. I) is strongly u,ell posed if the solution u, is unique, exists, and satisfies

I' l'(2.3) Ilwll_ + Ilwll_dt _<I;_e_'{ll6Yll_ + (II_FIt_ + tl@il_)dt},

where Kc and 'It may not depend on 5F. 5 f , gg, and ll" Ila and I1" IIr are suitable continuous nor,ns.

DEFINITION 2. Problem (2.2) is strongly stable if for a suJfieiently fine mesh the solution wj satisfies

I' I'(2.4) I1"'t1_+ Ilu'll_dt _< lide ""t{ll,_fll_ + (ll'_rll_ + II@[l_)dt),

where I_a and 'ld may not depend o_ ,_F_.,if_, @, and I1"tla and I1"IIr are suitable diserae no,'ms.

DEFINITION 3. The approximation (2.2) of (2.1) is strictly stable if the analytical and discrete growth

rates (see (2.3) and (2.4)) satisfy

(2.5) 71._<_ + O(A.),

where Ax is the mesh size.

2.2. Linear algebra relations. For later reference we define some useful matrix operations; see [25].

DEFINITION 4. Let n be a p x q matrix, and B be an m / n matrix: then

.4 B =
ao.oB

ap_ 1,0B

ao,q-iB ]
ap- l,q-- 1 t_

The' p × q block matrix A C, B is called a hlvneeker product. There are a nulnber of rules for Kronecker

products; see [25]. In this paper we will make frequent use of

(2.6)

(.4,2, B)(C,7, D) = (AC),_, (BD),

(.4 ,'_, B) r = A :r B v .

(A i B) -I = A -1 ,:, B -1

Consider the following matrices,

(2.7) B = [:l T > 0, (' = C T > O, D = dia!l(di) > O,



where B, C, and B _:: C have the structure

(2.8) z_ =

/_L

1

0

0

1

We will need the following lemma.s.

LEMMA 1.

B R

0

Let (' and D bc the M × M matrw(s &fined tn (2.7)-(2.8).

dimenswt, 7" × r and the first and last 7" components m D ar( constant, then

(2.9) CD : DC = C1/2D( '1/'-' > O.

(,R

ff th( blocks ('L,(_'R haw

and

AD = DA = ,4_/'-'D.41/'-' > 0

if the first (Dr ..... Dq) and last (D_v-(q-l) ..... DN) q-blocks m D are equal. Proof: By introducing DL =

(lq D1 ) with I the identity matrix, the relations (2.6) and lemma l, the upper left corner of AD becomes

(BL , :'(')DL = BL ,('Dl = Bt ,!, Dl(: = DL(B_., ,(')

(:_.2)

where

(:_.a)

(B,_ ,: (')r)_. = (B_/'-' : (-'_/_-)(B[/_- D_C '/_-) = (t_[/_- : C_/_)D_(P]_" _ ("/'-').

Positive definiteness follows directly from the fact that DL > 0. []

3. The 1D difference operators. The 1D difference operators that form the basis for lhe multidi-

mensional difference approximations will be presented below, for more information see [1 7], [18].

3.1. The discrete differentiation operator. Let l:, 73U be the nulnerica] approximations of the

scalar quantities u and u_. respectively. The approximation 73I: of the first derivative

(3.1) Dt _ = P-lQU, u,. - p-tQu = T,, IZ_l= O(_Xx"'..Xx")

where 17;I = o(.xa-"'..x_.") means that the approximation of the differential operator is accurale to order

m m the interior of the domain and to order n at the boundary. Tyl)ically we hay( • n = m - 1. The

summation-1)y-parts (SBP) operator 73I; satisfies

(t'. 731 ")p = t'x i]x' - l'()i _)- (73U. l')v

(l' l')p =l'rPl ", p= pT, Q+QT= I), D=diag[-l,O ..... 0,1]

and (1 < p,,,:,,Axl < f ) <_ p,,_.,.Axl. Ot)erators of 1he .qBP lyt)(' arise naturally with cenler_(I ditfel'ence

apl)roximalions: for examples see [9], [15], [12], [26].

(2.10)

Pro@" A direct matrix multiplication leads t,o (2.9). []

LEMMA "2. Let the first and last r components Dk = diag(di), k = 1 ..... )_" bc constant._: I_t B hm,c q × q

blocks ]3L, ]3R and (' have r x r blocks ('L,('R," S_'( (2.7)-(2.8). II'ith .4 = B:.(' and D = diag(D_.) we have



Ill this paper we will apply the first, derivative operator twice to obtain tile second derivative; i.e., we

will use

(3.4) T_"U = T_(DU), u_._. - P-1Qp-1Qu = 7_, T_ = O(Aa'_ m, Aa ,p)

despite the fact, that we lose two orders of magnitude ill accuracy p = ,i- 2 at the boundaries. Tile

second derivative defined in (3.4) satisfies (3.2) with I '_ = BDU, which is completely similar to (u, (bux)x) =

ubu,.] 1 - (u_., bus) obtained in the continuous case. For another type of second derivative, see [17], [18].

3.2. The discrete integration operator. The matrix P in the SBP derivative operator is a discrete

integration operator.

THEOREM 1. Let the difference operator D = p-1Q defined in (3.1)-(3.3) exists on the' interval -1 <

x < 1. The,, the matrix P is a_l integratiol_ operator which satisfies

/1(3.5) (uv)_.dx = UT PTq " + (Du)T PV
1

where U, I'" are the projections of the contilmous fm_ctions u, v onto the grid. Pro@" uT PTq" +(DU)r PI" =

(UV)l_ _ (_,,)1_+I ,= = f'l(uv)_dx. []

It is also possible to prove the following theorem.

THEOREM 2. Let th_ difference operator P-_Q defined in (3.1)-(,3.3) exist on the interval -1 < x < 1

and be accurate to order m. Then, the matrix P is an integration operator which satisfies

//(3.6) ul., dx = _TPI" + O(Ax"').

where U, V are the projections of the' eontinuou, fu_ctions u,'l, onto the 9rid. Sketch of Proof: The proof

has two parts. The first, part. shows that (3.6) holds for general polynolnials. Next, Weistrass' interpolation

theorem (see [28]) is used to show that it. also holds for continuous functions.

4. The continuous problem. The definition and specification of the continuous problem is done

with Cartesian coordinates. After the transformation to curvilinear coordinates we check that the essential

lnathelnatical properties are preserved.

4.1. Cartesian coordinates. The two-dimensional (2D) linear problem considered in this paper is

l_t + F_ + av = h, [a,,y]¢_, t_>0

(4.1) u = f, [a',y]EQ, t,--0

Lu = !t, [a',y]Ea_, t_>0,

where h, f, g are the data of the problem, L is the boundary operator, and

F = F I + F V, -t"l = altt, F v = -(611ux + bl2ay),
(4.2)

(-; = G I q- G , (_1 : a2lt" (d : _(b2 l_ta,..kb.22_ty).

The coefficients ai, bij are known fullctions of a:, Y, and t. For sinlplicity we have chosen [2 = [a:, y] C

[-1, 1] × [0, 1]; see figure 4.1. For fulure reference we also introdt, ee

(4.a) #= (a_,a._,), Y = (I:,(;). ,7= (,i,,11.2),

where ff is the outward pointing unit nornlal on O'Q.

Equation (_t.1) can be thought of as a model for the Euler, Navier-Stokes, or Maxwell's equations.
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FIG. 4.1. The computational domain.
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4.1.1. Tile energy estimate. Well-posedness of (4.1) requires that we can obtain an energy estimate.

Let

• 1 /_1

/ da,d q, II_ll:',(,,1.4) (_, ,,) = _ ,,,,
) 1

(4..5)
.1

('*' I')E'*V= .Z, (,*')E.wN_J. (", *I)E.W= II"H_-.W

fl
(4.6) (u, v)N.s" = (u,,)x,sd.e, II_dl_'._= (,1. ")_._'11_'1_',._'= (,I, _,)_ _,

l

denote the L_ scalar product, the L_ norm, the boundary scalar products, and the boundary norms respec-

tively. The subscripts E, II', N, ,_,'refer to the EAST, WEST, NORTH. and SOUTIt boundaries (see figure

4.1).

The energy method applied to (4.1) leads to

(4.7)

II.ll_ = - [(u, F l + 2FV)E - (u, F I + 2F_)n ]
• /

EAST-_VEST

[(u, (;t + 2(;v, (u, G t + 2(; v )s]-- J N --

NORTH-"SOUTH

- [(,,. F/) - (,,_. F_) + (,1.(;_) - (,,,,. (/)] + [(,1./,) + (/,. ,,)]

G ttO@Ttt 1 (; bI()WTH "2

- [(u,-. I''v) + (F v._c,) + (,_.G _) + ((?.,_)].

DISSIP_ATION

(;ROWTH 1 (Gt/I) and GROWTH 2 (GR2) in (4.7) will lead lo a growth or decay in ]l,,ll_, but will not

affect well-posedness. Note that tbr constant coetficient prol)lems (;Fll is zero. To bound II,l[-' i,, time. the

first two terms mus! be bounded using (h(' correct boundary conditions and the I)ISSI1)ATION (D1) must

have Ih(" right sign.

4.1.2. The dissipation. For a correct sign of D! (see (4.2) and (4.7)) lhe eigenvalues of B + B r where

(,1.8) B = b.,i b.,,,



nmst be positive; therefore,

/ \
9

(4,9) all _ O , b,)q _ 0, bllb22-Qb12-l-b21) --- 2 >0

is a requirement for well-posedness.

4.1.3. Boundary eonditions. By integrating the "cross derivative" components of file first two terms

in (4.7) one obtains

- _(f' + 2r")[+_Idv- ,,(C.I + 2C:')l_,dx= (bl__+ b__l),,'_r_+ll0_
• 1

f- _((ol + (<_.)_)_- '2<_,,_)l+_Idu- ,,((a_+ (b_.l),),,- 2b__._,,,_)I_d_,.
1

The term (b_2 + b2_),,'_l_+110_ involves the point values in the four corners of the computational domain. These

point values cannot be estimated (unless they are artificially specified). Boundary conditions where the

viscous fluxes (FV,G V) are specified avoid that difficulty and lead to an energy estimate; therefore one

should specie, the total flux (F = F I + F V, G = G I + G V) or the viscous flux at the boundaries.

Consider the first two terms in (4.7) and recall the definition (4.3). At x = 4-1 with fi = (+1,0) we have

the boundary conditions

(4.10)

-al(-1,g,t) = 5.ff_<0 fi-ff = F = Fw(y,t),

-al(-l,y,t) = if.if>0 fil.ff = F _ = F_)(y,I),

+a_(+l,y,t) = 5.ff>0 fiv.ff = F v = F_'(y,I),

+aa(+l,g,t) = if-if_<0 /7.ff = F = FE(y,t),

while

(4.11)

-a_(x,O,t) = if.if_<0 fi.ff = (; = Gs(x,t),

-a2(x,O,t) = _._>0 fiv.g = Gv = G_;(z,t),

+a2(x,l,l) ff-/_'>O _l' ff G I" ,v= • = = ON(x,t),

+a2(x,l,t) = if.if_<0 /_.ff = (; = (;,v(x,t),

are nsed at y = 0, 1 where ff = (0, q:l) . The boundary conditions (4.10), (4.11) can also be formulated in

the following more general way.

(4.12) if.if_<0 => /_.5 = :aa.ff
_._>0 _ :"_ = :L_

Bou,,dary conditions of the type (4.10), (4.11), (4.12) have been derived il, [29] and [20] for the Navier-Stokes

equations.

Let us consider the EAST boundary in detail, and let. us assume lhat al is positive at..q = 0, becomes

negative at 9 = y0 and remains negative until y = 1. Inserting the boundary conditions (4.10) into (4.7)

yields

(4.13)

Jl 1 /,yn-- u(F I + 2Ft')lEdy = -
,ID

jr1 �'go
+ al(l,y,t)u 2 -2uFEdy= -

• a ,10

/i' /:'- [al It[-' + 2uFI_d.q = -
. o •

I(,_(1. :/, t) Iu'-'+ 2.F'_;du

JaaIu" + 2uF_:dy

I,,,l,," + "),,(OlF:, 4: I_)dq,



where c*1 = (1 -[all/a,)/2. The requirement that. aa changes sign in the manner described above can be

relaxed, so (4.13) is a generally valid fornmla. An entirely similar procedure at. lhe other (WEST, NORTH,

SOITTtt) boundaries yields the final result:

(4.14)

where

-(,,. F' + 2F_)E = -(,,, I",l,,)e - "2(,,,?E)_:.

(,,, v' + 2F"). .... (", I", I").' - 2(.. P._).,

-(u,G* + 26 'v)N = -(", [r,2lu)N - 2(u,(_N)x,

(_,,c;* + 2C;v ).s'= -(,,, 1.21_,)s- 2(., (;..),_..

(4.15)

FE = (rIFE + (1 -- G1)FE V,

Av = o'3Fw + (1 - era)F#t_,

('-;;v = o'5(;N + (1 -o'5)GSx_,

(_.s' = arGs + (1 - crr)Gl_,

o1 = (1 -I"al/_)/2,

o'3= -(1 + lall/a,)/2,

_ = (1 -1__1/"2)12.

-r= -(1 + I_,ul/au)/2.

Inserting the relations (4.14) and (4.15) into (4.7) leads to

(4.16) I1_11_5 _ _llFzll_ + GRI + GB2 + D1,
I=E,W,N,S

Wllere

rm - j_l lall,,,dy '_ la'[u-"d'vb-=-i

,l'_+la'-I"2dx .(1 I_-'lu_-dx

qN- J_tu'-'dx [u:l, 9s- J_l u'-'dx lu=o.

The l)arameters tiE , iiw, _13._,11s are strictly positive if al, a., are zero for a finite number of points.

Time-integration of (-1.16) lends to an energy estimate of tile form (2.3) if (4..q) holds. Provided that

a solution exists (can be shown by using tile Lal)lace-t, ransform technique or via difference approximations:

see [30] and [31]), we can conclude that the following theorem holds.

'rHEOREM :_. Problem (4.1), (4.10), (4.1I)is strongly well posed.

4.2. Curvilinear coordinates. In this Section we consider problem (4.1) on a curvilinear domain. By

introducing the transformation t = r, x = x(_. q, r), !I = g(_, _l. r) and il's inverse

(4.17) r = t, _ = _(x,g,t), 9= 9(x,g.t),

we obtain the transformed equation

(4.18)

where

(,lu); + (d(_t u + _.f" + {v(;))( + (J(qt u + q._F + qu(;)),_ = ,lh + t?ffS,

1¢H.s'= ,,(.I, + (J,_,)e + (J'_,),,) + F(('l'%)e + (J,r_),_) + ¢;((.IQ)e + (.l,l,,),,).



Using the metric relations causes the term RHS to vanish:

(4.19)
JR,, = -Y_ JTly = x_

J = x_y,_ -.%y¢ J = (_.11u - _uTb:) -1.

Ill this paper we will consider the steady version of (4.17), i.e., _ = _(x,y),q = 71(x,y ). The new

transformed problem becomes

(4.20)

J,,.+(r)_+(c),_ = h, [_,u]e_, _->0,

. = f, [_,vlEa, ,-=0,

L. = g, [_,,1]E3f_, T>0,

where h = Jh, f, 9 are the data of the problem and f_ = [_, q] E [-1, 1] x [0, 11. The new transformed fluxes

•are

(4.21)

where

(4.22)

and B is given in (4.8).

4.2.1. The energy method. Let

(4.23) (,,,,,)j = /l fl
1

F= J(fi.V_) = F I +F l', F 1 =alu,

G=J(fi. Vr/)=G I+G v, G z=a2u,

al =,lff. V_ bll =JV_.BV(

a2 = Jff . _'q b__l = JV" rI . B_'_

F v = --[bllu( + bl2t/_/],

G v = -[b21tt( nt- b,.2u,],

f lfl(4.24) (u, v) = (uv) d(dq, I1_11"-'= (u,,,),
1

fo(4.25) (u, v)E,w = (uv)E,w d,I, I1_,11_,..= (_, u)E,w,

/_.l
1

denote the weighted L__ scalar product and norln, lhe L., scalar product and norm, tile boundary scalar

products, and boundary norms respectively. Tile subscripts E, _I', N, S refer to the EAST,WEST,NORTH

and SOUTII boundaries as in figure 4.1, with x, ,q replaced by _, q.

The equation corresponding to (4.7) becomes,

([Iall._), = - [(,. F _ + 2F v )E - (u, F 1 + 2F v )_1]
• ¢

EAST-_VEST

- [(u,(;_ + 2Ov)x - (u,(;z + 2Gv)s]

NORTH_SOITTH



(4.27)

- [(,,, Y_) - (,,_,F I) + (,,,C_) - (,,,, C')] + [(,,. _,)+ (h, ,,)]

GRO@TH 1 (;ROWTtt 2

-!(,,_. F v) + (F". ,,_)+ (,,,,.(;")+ (C". ,,)].
DISSIP_TION

Precisely as in the Cartesian case, GRI aud (;112 in (,I.27) can lead to a growth or decay in NulJ._, but will

not affect well-posedness. The metric relations (4.19) show that in the curvilinear case too, GR1 vanishes

for constant coefficient problems. Just as in the Cartesian case, we need to assure that DI has the right sign.

4.2.2. The dissipation. Similar conditions as in the Cartesian case for positive eigenvalues also apply

in the curvilinear case; see (4.27). Thus we nmst show that

(42_) bll >(}, bo.,>O, bllbe._,- [''__b12+b21) 2- 2 >0

t.o assure the right sign on DI. The conditions (4.28) hold, since (4.22), (4.8), and (4.9) lead to 2bll =

JY'_T(B + [3T)y'( > 0,2b,_2 = JvqT(B + I3T)_*I > 0, and

(): I)bllb22 - bt2 + b,,l bl'_, + b,_,l -
"_ = bllb22 -- "_ > 0.

4.2.3. Boundary conditions. (:onsider the first two terms in (4.27) and recall the definitions (4.a).

The outward pointing unit normal on ¢_Q is,

+ X",_ q: X-'b/

(4.29) _(_=-I-1,0)-iV_l, ,V(_,',j=0,1)-iV,i I,

where I2",_J = "_+ (_ and IV,,l = + q_. The boundary conditions leading t.o an energy estimate

becolne

(4.30)

-aq(-l,_l,t) = -Jg/.V__<<) ,]tT. V_ = F = Fw(tl, t),

-al(-l,ll, t) = -Jff . V_ > 0 ,IF v . V_ = F v = F _w(q,t),

+al(+l,0./) = ,16.Y'_>0 ,1f7v.V_ = F v = F_(q,t), .

+a_(+l,q,l) = Jff-V{_<0 Jb_.V_ = F = FE(q,t)

at. ,5,= +l, while

(4.al)

-a=,(_,O.t) = -J_Y.V_I<_0 JlT.V_ = G = G.,.((,t).

-a,2((,O,l) = -,]ff._',l>O JlTV.v,I = (;v = (;_7(£,t),

+,,2((,1.t) = J/7.Vq>0 ,]Fv.v_I = (;v = (;](,((.l).

+a,e(_,l.t) = Jff. V.q<0 .IF.Vq = (; = (;x((.t)

should be used at. q = 0.1. The boundary conditions (4.a0). (4.31) can also be formulated as in (4.12).

The same procedure as in the (iartesian case leads to the estimate

(,1.:_2) ( ,, 5), <_ _ _tl?rllY+¢;t_l +(;H2+I)I,
I=I=',II,N,."¢

where

1
_'1_: crll"l:, + (1 o'l) _x= -- /_g'., ¢rl = 7,(1 --I"'1/"').

z



(4.33)

and

kw = _3Fw + (1 - _3)F_;,

G_ = c_7(;s + (1 - crT)(,s,

_3 = -21--(1 + Jail�a1),

_5 = 1(1 -la,.,[/a2),

1

'IE - fro lax[uUdTI f_ [al[u2d'l

f___la21u'-d_ fl 1 fa21C'd_

'IN-- fllu2d5 I,,=_, qs- -71-_ In=o-ff-1 u-a_

The parameters r/E , qW, qN, 118are strictly positive if al, a2 are zero for a finite number of points.

Time-integration of the estimate (4.32) leads to an energy estimate of the form (2.3) if (4.28) holds.

Provided that a solution exists we can conclude that the following theorem holds.

THEOREM 4. Problem (4.20), (4,30), (4.31) is strongly well posed.

4.3. Interface conditions. Boundary and interface conditions of the flux type (see (4.10), (4.11),

(4.30), and (4.31)) require extra careful treatment; see [27] for an example.

4.3.1. Interface conditions in the curvilinear case. To apply the SAT technique [16] on the fluxes

at, an interface between two blocks with different coordinate transformations and matching gridlines (see [17],

[18] for the one-dimensional treatment) requires that we identify the continuous part.. Matching gridlines at

= _o = const implies

(4.34) (x¢)a # (J*_)2, (Y_)l # (_)2, (J2r/)l = (Xr/)2, (Y_7)l ---- (Yo)2

while we have

(4.35) (x_)l = (x_),_, (Y_)I = (Y_)", (x,)l # (x,)2, (Y_)I 3£ (Y,)2

at q = q0 = const. The subscripts 1,2 refer to the two coordinate transformations.

Equations (4.21), (4.19), and (4.34), (4.35) immediately lead to the conclusion that

(4.36) F1(_o,q. r) = F..(_o,_1,r), (;1 (_o,_1,7-)# (;2(_o, ,_,7-),

(4.37) FitS, 1](I, 7-) # F2( _, llO, T), (;1 (_, I]0, 7-) = (;2(_, I]0, 7"):

i.e., F is continuous across _ = const while G is continuous across q = consl.

4.3.2. Interface conditions and vanishing wave speeds. Another problem with flux-interface con-

ditions appears when the wave speed a goes to zero. Consider the two constant coefficient problems

ut + F(u).,. = O, -L < X < 0 and tit + F(t,)_ = 0, 0 < .r < L,

where F(w) = aw+FV(w), Fl(w) = -¢wx. Both problems have homogeneous outer boundary condilions

at I.v] = L and zero initial data, and they are ('Onllected through interface coudiiions at x = O. We

10



will compare t, he effects of flux-interface conditions (F(u) = F(v),FV(u) = FV(v)) and variable-interface

conditions (u = v, u_: = t,x) on tile solutions.

By transforming the probleln for v on [0,+L] onto [-L.O] via the transformation a, --+ -(, and then

replacing ,_ with a', we obtain

(4.38)

t"t+Ag'x = eV"x,, ¢ >0, -L <a:<0,

¢' = 0, l=0, -L <.r<0,

B-Lg' = O, t > O, jr = -L,

Bo(' = 0, t>_0, a'=0,

where t:, = ({I,v)T,A = diag(a,-a), and B-LV' = 0 denotes the outer boundary conditions. Btl_' = 0

represents the transformed interface conditions

(4.39) au- ett. = av + (v_., -(ua- = +ev_. or u = v, u_- = -v._.

We will treat (4.38) as a half-plane problem, which means that we let L -+ :v and replace the influence of

B-L by only admitting bounded solutions as a" + -.;'<..

The Laplace-t.ransform technique applied to (4.38) leads to

(t(X,3) = O'1 (3) exp (Kl(3)x), [,'(a',s)=o'2(s)exp(h'2(s)a')

where 3 is the dual variable with respect, to time and

__=+g+ (g +-_' "- 2_+ (g)-+-

Note that both (t, and i" decay away from the boundary a" = 0.

The interface conditions (4.39) lead to the equation E(s)8 = 0 where 8 = (<rl,_r2) f. A well-posed

bounded solution is obtained only if del(E(,s)) 7£ 0 for !}?(3) > 0. The flux-interface conditions in (4.39 lead

to

(4.40) E(3) = - :=> det(tT(3)) = -2ca "2+ -,

while the variable-interface conditions leads t,o

(l,)(4.41) E(s)= _ &t(E(3)) =2 (.77)- +-.
ffl h'2 (

Obviously the flux-interface conditions can lead to unbounded growth for vanishing waw" speeds, because

det(E)a._+o = 0 independent of 3. The variable-interface conditions, on the other hand, lead to a well-posed

probh'm since dr t(E)_,_l) = 2 V/_7/< ).

A similar analysis of the flux-boundary condition au - ¢ux = 0 for the single domain yields &t(E(s)) =

a/2 + v/(a/2) '2 + .s(. ('onsequently, lhe l_roblem with unbounded growlh for vanishing wave speed does nol

exist in )lie bolmdary conditiotl case because del(E)_...+( I = _.

5. The discrete probleln on a curvilinear Inesh. In the rest of this paper we will consider the

transformed problem (4.20), (4.30), (4.31). Note that problem (4.1), (4.10),(,I.11) corresponds to the sp('cial

case where r = l,_ = ,r and 7/ = .q. For notational simplicity, we ignore the "hal'" lmtation for l.he fluxes all([

transformed coeft:i(-ients introduced in (4.20)-(4.22).

11
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FIG. 5.1• The sin9le-dornain case iT1 trans.formed space•

Let tile N × N matrix P_ and the M × m matrix P,1

Section 3.1• A product av is arranged discretely (where av

(5.1) AV :

0

0

,4N- 1

."IN

be tile 1D positive definite matrices defined in

AI') in the following way (see Figure 5.1):

~

I]
~

1')

~

f_v

where -_i = diag(aij). Also, the N x N matrices JE, Jw, I_ and

0

1

JW = o]
0

. . .

O • • .

(5.2) JE =

k}l

I'_2

]

, I-_.=

l}i

the M x 51 matrices JN, Js, I,_ are

1 o-I
t

, I( = " " I ,

0 1j

(5.3) du =

0 ' • o

• . •

0

1

J5

1 * •

0 ••

0]
!

I '

0J

1

. • •

respectively. The subscript_s E, W N, S refers to the EAST, WEST, NORTH, and SOUTH boundaries (see

figure 5.1)• At this point we also define the restriction of U to the boundaries:

(5.4) UE,W = (JE,w L::'1,7)U, Ux,s = (I_ < Jxs)l:.

5.1. The norlns in the transforlned problem. The norms and scalar-products corresponding t,o

(4.23)-(4.26) are

(5.5) (_t t')a = ur(P_ [! P,,),sl, (r:, t:)., = IIt'll.3,

{5.6) (r ",_) = r:r(Pe <£P,,)i, {u, _) = IIUIl-'.

(r,.7) (_, _)E.,,- = r'r(&,, - ,: P,,)_ = l,'i/,.-P,,_E.,,-. IIt,_ll_,.- = (t', _)v.,,,-,

12
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FIG. 5.2. Schematic showing d requirements necessarg for" MJ to be a ,orTn: 7"= 4 and q = 2.

,7" p - " = ,

Obviously, the relations (5.6)-(5.8) define norms since P_ and Pv are positive definite malri('es. \Vhal abolll.

(P_ P,j)J in (5.,5) ?

The metric scalar J is defined in (4.19). In malrix fornmlation we have

(5.9) J = diag(Ji),i = 1 ..... N ,i_ = diog(Jij),j = 1 ..... M.

We need the following theorem.

THEOREM 5. Let M = Pe P,_. If the first and last r components m Ji ar_- constants and the first

(if1 ..... jq) and last (Jx-(q-,) ...... }_q,) q blocks in J are equal, then MJ rs a horn,. Proof: Lmnma 2, with

/3 = P{, (7 = P,_, and D = J, with J defined in (5.9), leads directly to MJ = JM = MI/eJMI/'-' > 0 I--1

The requirements m theorem .5 are illustrated in fgure 5.2 (for r = 4 and q = 2) where rxq values of J are

equal in the corners and r, q values of d are constant normal to an 0 = const, _ = const boundary respectively.

A curvilinear transformation with such a d close to ,_f2 is called volume l)reserving and guarantees that AI J

is a llOrlll.

Remark. The conditions in t.heorenl 5 (i.e.. that J must. be consl.ant in the first q, r l)oints normal and

adjacent t.o the boundary dQ) can be thought of as theoretically ideal conditions. In practise one approaches

the ideal condition with increasing resolution on a smooth mesh close t.o the boundary because

d(i,j) - d(O,j) = J_(O, rlj)(iAe) -}- C)(,.._e'), i z 1 ..... q.

,l(i,j) - J(i.O) = J,,(&,O)(jA,])+O(Aq'-'), j = 1 ..... ,.,

where it is assumed that J(O,j), J(i,O) are the values of J at the boundaries. This process is illustrated in

figure 5.:_, where the nfinimum eigenvalue of PD + DP as a function of increasing resolution is shown. The

mininmm eigenva[ue goes from a negative vahte for large Aa • to a posilive one for small ..Xa'.

5.2. The single-domain problem. The discrete formulation of (/I.20). (.1.30). (4.31) with the SAT

technique [16] for incorporating flux I)oun(lary conditions is

(5.1 O) ,l I :, + l) e I" + i),_ (; = h + B ( ", [' (O) = f,

where the continuous derivatives /'), (;,l are apl)roximate(I with

(.5.11) Det:=(f)-JQ(, 1,_)I;', D,_(;=(I_, P,71Q,_)(;

1"3



GRID REFINEMENT ON (PD +DP)

D, = 1 + 100 sin(alpha _)2

P = 6th-order norm

negative eigenvalues

posilJve eigenvalues

100 200

Gddpoints

FIG. 5.3. Minimum eigenvalue oJ PD + DP as a .[unction o.[ Ax.

and

(5.12)

Bc = (P_-_JE _:,I,_)(F - FE) + (P[IJE _ l,,_2)(e' - F;)

+ (P[XJw _._',I, Za)(F - Fw) + (P_-aSn. _L I,24)(F u - F_,;)

-I2 (I_E5 _) P_IJ_')(G• - GN) + (lCZo _:,. P, TaJ_'¢)(G V -G:v)'v

+ (I_2_+ p;'ds)(a - a_) + (z_2_,:::,p,7_j,,)(c,' - a_:).

Tile N x N matrix Q¢ and the M × 51 matrix Q, are defined in Section 3.1. Fluxes with subscripts E, W, N, 5'

are boundary data. The matrices £1 - £s will be deternfined below.

5.2.1. The energy method. Multiplying (5.10) from the left with UT(P( _, P_), introducing the

notation M = P_ :2' P,, and adding the transpose of the equation leads to

(5.13)

(lluIl_), = _[(rr(Q_ p,, )r + FT'(Q_ ,i. P,, )U] + [VrMh + hrMf _]

+ _[/,T(p_ ,:i Q,,)C; + Gr(P_, , , Q,_)/_] +BT + (BT) r

fi

where

liT = uT(JE .-P,1_1 )(F- FE)+ uT(Jt_: '_ P,_E,_,)(F u - F_)

14



3- [TT(J W (% prl_3)(F __ Fi V ) .o¢_IrT(Jw _:_:p_E4)(F v _ F_)

+ t 'T (P_ E,_ ,:_:,JN)(C; -- (;X) + t'T(P(E6 ':i_JN )(G _ - G_(,)

(5.14) + t'7"(e(E7 ,: J,_)((; - (;s.) + t'T(P(2s &.)(G r - (;._:).

In (5.1:3) we have assumed that tile metric transformation is such tha! MJ is a norm. Note thal the [tux

terms wit.h subscripts are given data.

The notations and abbrevialions

(,5.15) Q_ + Q_ = B( = JE - Jw, Q,, + Q,_ = B,, = Jx - Js.,

will be used to expand the A and B in (5.13). We obtain

A+B = - [Ur(B_ .:::.P,)(F 1 + 2F v) + (F / + 2FV)T(B¢ _L,P,)U]/2
• /

E-"W

- [l'r(P_ C, By)((; I + 2(; v) + (G I + 2G_)r(P( _:2.B,)l']/2

• N__S

- {[(1:, D_F;) + (I)(Ft, U)] - [(F;, D([") + (D((,', F;)]}/2

• Gt{1 "

- {[({,', D,7(7' ) + (D,,G I, U)] - [(G', D,,l,') + (D,_[,', (;;)]}/2

(;Ill

(5.16) +[(D_lLF v)+(f v,D_(')+(D,I'),G v)+((;v D,l')].
• ,,,"

fii
Note the close sinfilarity of the discrete energy estimate (5.1:/). (5.14), (5.16) with the corresponding

continuous one: see (4.27). ,lust. as in the contimlous case Gill and GH2 will at most create an exponential

time growth. To obt.ain an energy estimate we must determine under what conditions the dissipation (Dl) is

negative definite and which vMues we must assign t.o the matrices E1 - Es t.o obtain bounded cont.ributions

from the boundary

5.2.2. The numerical dissipation. The DI is

(5.17) DI = (D(_)TMF v + (FV)TAID_U + (D,I[r)TAI(; I 3- ((;_)TMD,_I'

The relationship between the gradients and the fluxes in the continuous case are given m (4.21). In mat.fix

fornmlation for the discrete case we have

(5.18) (7 l = - B_I B22 D,_I' '

where B#l(i,j) = bkl(_i, qj). By int.roducing (5.18) into (5.17) we gel

D,_[' BI'_,:I[ + MB'_,I B._,._,M + MB_._, I),1'

At, t,his poild, we need to define M = P_ P,_ in greater detail: we have

, 0 0
(.5.20) f'_ = .. . f;, = ..

0 , 0 ,

15



We will need tile following lemma.

LE,,,.A3. If theblock.,H_,Hgh.,,_thesiz_q ×q, thebloc1.',H_,Hgha,,_the_i.:e,'× ,', a,,dthe
matrices Bkt in (5.18) are constant in the first q, r points normal and adjacent to the boundary _5_. then the

dissipation DI defined in (5.19) is negative definite. Proof." Lemma 2 leads to

(5.23)

where

BllM+AIBlt B21M+AIB12 ]I312M + MB',I B_.M + :11B22

0 M 1/'- B1,_ + B,.1 2B_., ] 0]0 M1/2 > 0 D.

Remark. The conditions in lemma 3 (i.e., that the matrices B_,t in (5.18) are constant-in the first q, r

points normal and adjacent to the boundary 8_) can be thought of as theoretically ideal conditions. In

practise one approaches the ideal condition with increasing resolution, smooth coefficients bij and a smooth
mesh; see the Remark on J in Section 5.1.

5.2.3. Stability. To obtain an energy estimate (given the negative contribution of the DI on the right-

hand-side of (5.16)) we must assign values to the matrices E1 - £s in order to obtain a bounded boundary
contribution.

Let. us start by estimating the terms at the EAST boundary. We have

BTE = - {uT[pn(I/2 - _I)]F 1 + (FI)T[(I/2 -- ET)p,,]U}

..... {UT[P,,(I E-1 E2)] FU+ (FV)Y[( / _T E.,T)P,,][,•}

(5.21) - [uT P,,PU + (/_E)Tp_u],

where Fu = E_/rE + E_F_'.

Obviously, the terms involving the viscous fluxes nmst be removed. This yields E_ = I - El. By

observing that. F _ = AFU where AE = diag((at)Nj) (see (4.21) for a definition of al) we obtain,

BTE = - I_T[P,,( I/2 -- ___,I)]AE --1--AE( I/'2 -- ET )pn]u

(5.22) - [FT p,,PE + ( _'E)T p,,u].

Now we choose _1 such that {I/2 - _)AE = [AEt/2. This choice and an entirely similar.procedure at. the

other boundaries yields

_o ,2;(11_'115), < _ II#Ill_ + (;R1 + GR2 + DI,
I = E, B', N, ,q'

(5._4)

A,. = _3rw + (6 -_a)F(,;,

(;x = Es(;_.v + (1_ _ _sj,oN,v_,=,v

C'," _r(,.'.; + (I._ _ _+,v

_-_1_- (Iy --IAEIA_I)/2,

_3 = -(g + IAwIA_._)/:_,

2_ = -(/.+ IA.,,IA;')/2,

(5.25)

all([

E._, = I.,_ - E_. E4 = -l.u - E3, E,3 = I,. - E._, Es = -I.,. - Er,

(t _,IA,Ig')_ + (IA, Ig:,_'),] :_,,q_= , 1= E, tI', ,b'.
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Tile similarity of tile discrete energy estimate (5.23) with the corresponding continuous one (see (4.16)

and (4.32)) implies strict stability. Time-integration of (5.23) leads to an estimate of the form (2.4) if the

D1 has the right sign, i.e., if temma 3 holds. We can conclude that tile following theorem holds.

THEOREM 6. Th+ ,q,l,ro,imat+on (5. tO) of the prol, l+m (4._20), (4.30), (4.31) is both strwtlv and ,strongly

stable if lemma 3 hold.s and E1 - Es are given bg (,5.24) and (5,25).

5.3. The 1D multiple domain probleln revisited. Before we consider the 2D nmltiple-domain

problem, let us once more look at the 1D multiple-domain problem considered in [17], [18].

5.3.1. Derivation of the Q-fi}rmulation for interface problems. Consider the following hyperbolic

interface problem

(5.26) u++u_ =0, -1 <x<0, and t't +v_ =0, 0<x< 1

a,ugmented with suitable initial and boundary data and the interface condition tt = t, at x = 0. The

straightforward approximation of (5.26) is

_:, + Pt-7_Q++I:= P£t(c_L(/:x - Ii))<_,)

(5.27) It + P_IQnI: = PtTt(cr,¢(I}} - (:x)eu)

where 1: = (Uu ..... [+X)T,eN = (0 ..... O, 1) T, I" = (I}_ ..... i_t)/',e0 ---- (1,0 .... 0) T.

The boundary terms from the left (L) and right (R) outer boundaries are ignored.

(5.27) can also be written in the following way:

Tile formulation

(8.28) Ply; +{Q+E)w = 0

where W = (_, _')T p : diaq(PL, DR), Q = diag(QL, Qn), and

(5.29) E =

0 0
x',

0 0 q-or R --rr R

We can nov,' split up Q + E into a symmetric and a skew-symnletric part as

(q + E) _ (O + ,_:)r (Q + '2) + (O + E)r
Q+E= +

2 2

The 2 × 2 blocks of Q,,k and D corresponding to the nonzero elements in E are

Q+_'=2 --(,rL--_rn) 0 ' 2 _L+C_R --1--2_/_

In the sequel, the "+tild+"" sign will indicate the 1 × 4 block that couples the solutions in the left and right

domains. Equation (5.78) now I)e('omes

(5.3{}) PIVt + (Q"_ + I9)1I = {).

In [17] it was shown that (5.27) is ('onservative if crR= at - 1. By introducing this condition in O 'k and f)

we obt, ain tile final forln of the difference operator

[ ] ['-']- 1 0 1 [)----rr
(5.31) q.,k = 7_ -1 0 ' --I 1

17



where 0- = 1/2- c%.

The formulation (5.30), (5.31) hereafter referred to as the Q-formulation is a rearranged form of the orig-

inal formulation (5.27). However, the Q-formulation simplifies and even extends the possibility to formulate

suitable penalty terms for second order derivatives.

5.3.2. The Q-formulation for advection-diffusion interface pl'oblems. Consider

(5.32) ut+F(u)._ =0 -1 <x<O, and vt+F(v)x=0, 0<x< 1

where F(w) = a(x,t)w- eu,_ augmented with suitable initial, boundary, and interface conditions. An

approximation of (5.32) using tile Q-formulation is

(5.33) Pllt + (Q"_')(AW) - e(O *k + D._)P-I(Q "k + D3) = DIlV

where W = (U, V) T and P = diag(Pt, PR). The matrix A has the values of a(xi,t) on the diagonal. The

operator Q"_" is defined in the previous Section, and

[,1](5.34) /)i =0-i , i=1,2,3
-1 1

as in (5.31). The dissipation D1 is formulated as acting on W, which is a more general forlnulation that

includes penalty on the flux (0-1 = era(0, t)) as well ms penalty on the variables.

We can now prove

THEOREM 7. The approximation {5.33), (5.34) of the problem (5.32) with the choices

(5.35) 0-1 < 0 0" 2 : 0, 0"3 : 0

_s conservative and stable,

Proof: The energy method applied on (5.33) leads to

IlWll_ = (_w, AW) - (_(AW), W) - 2,(_,% VW) - WrB(AW - 2eDIt') +IT

• G_R1 • Ol BT

where 2DII" = P-1Q"kI,I" and the interface terms IT are defined as

[ ][ ](5.36) IT = W 2D1 + 2eD._,P-1D3 ((D2 - D3) |I:

D|.V o e(D_ -- D3) (I DII"

The growth (GR1), the-dissipation DI) and the ordinary boundary terms (BT) match the t.erms in the

corresponding continuous estimate perfectly. The choices (5.35) makes the terln IT maximally negative

definite and leads to stability. The al)proximation (5.33) can now can be written

(5.37) PIl't + Q"k(AII" - _P-_Q"klI') = D 1 lI',

which leads to conservation. []

It remains t,o identify the penalty terms and corresl)onding interface conditions and find out whether

(5.37) is sufficiently accurate. The equation

PIt) + Q(AII" - _P-_QII') = (Dl + (O- Q_k).4)|1"+ c(Q"kP-1Q "k - Qt'-IQ)[V
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FIG. 5.4. The multiple domain mesh i_ trans.formed space.

is a fornmlation of (5.37) ill the usual penalty form. Obviously, the penalty terms (denoted by PT) indicate

that the one-sided first and second derivatives are replaced by first and second derivatives involving the

adjacent domaill, and that dissipation is introduced via D1.

By introducing

,[1_1] 0 ]Q,k_Q= A, "_=-2 1 1 ' 0 (2ol-a)

we get PT = AAW+ _(A(p- t QtI') + Q_kAIV); this result shows thai the corresponding interface conditions

are u = v and u_. = vx. Also, because

]XO = (0, O)T, ]X(P-1QO) = (O(Aa'_ -_ , 5x;-'), O(Az_ -_, Aa:_ -_))T

where 0 is a smooth function and r is the order of the approximation at inner points, the approximation

(5.37) is accurate enough.

5.4. The 2D multiple-domaln probleln. In this Section, an interface at. _ = 0 with matching

gridlines (see Figure 5.4) is considered. Matching gridlines iml)lies that the number of points in the 7/

direction (M) is the same on both sides of_ = 0. We will also assume that P,_ = P, ff = Pv" which implies

that Q_ = Qff = Q,,. Note that, in general, the difference operators D_, Off can be different in the left. and

right domains and that X_L :_ ,--_R and "_L ¢ A'l? .

A multiple-domain Q-formulation of the problem (4.20), (4.30), (4.31)is

(5.;/8) ,JIIt+D_'tr+D,_G=M-a(D,i EP,_)W+h+B( ', II'(0)=f

where II" = (1:, 1") T. The solut.ions in the left (L) and righ! (H) domains are (tenoled respectively by l' and

_', and

(5.:Lq) D_ * = M-'(Q_ k . P,,). D,, = M-l(f) , ,Q,,).

In (5.38), B(: deuot.es the boundary conditions in (5.10) at the NOI/TII, EAST, SOl'TIt. WI':ST boundaries

in penalty form, h is lhe forcing funcl.ion, f the initial data. and F = .r'1 + t ,'v. (; = (;1 + (;v the fluxes

where

(5.40) i._oF t = AIIV. F _ = -(BIlD_J"II+ B1._,D,_II),
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(5.41) G / = A2H'\ G v = -(B_,ID_kW + B:,,D,W).

The remaining definitions and notations use.d in (5.38) are Q_k = Oe + A,

(5.43) ,.5, =

0 0

0 0
, D=

0

0
b

0

0

o]  [11]  [11]. (5.44) /5( = P_ ' -2 1 -1 ' -1 1 '

The matrix coefficient E will be determined by stability requirements.

5.4.1. Conservation. The Q-formulation automatically leads to conservation:

THEOREM 8. The approximation (5.38) of (4.20), (4.30), (4.31) is conservatwe.

Proof." Let h = BC = 0. Multiplying (5.38) with the integration operator oTffI where 0 is smooth, and

observing that Q_k = _(Q_k)7" + B_, Q,, = _Qr + B, ( B e, B,, are defined in (5.15)) leads directly to

J St gt4; -(D2kO)rmF- (D,o)r MG + Or(Be <2:,P,)F + or(PC C:'B,,)G = O.

The approximation (5.38) is conservative; i.e., it reverses the process of differentiation (second and third

terms above) and leaves information only at the boundaries {fourth and fifth terms). []

5.4.2. Stability. In this Section we will prove the following theorem.

THEOREM 9. The approximation (5.38) of the problem (4.20], (4.30), (4.31) is both str*ctly and strongly

stable if theo_vm 6 holds and EP,_ + PnE <_ O.

Proof. Tile energy method applied to (5.38) yields

(5.45) _(lllVII3) = GR1 + GR2 + DI + BTE + BT, r + BTx + BT,. + IT

where it is assumed that MJ is a norm: tile requirements are given in theorem 5. The boundary terms

BTE + BTw + BTx + BTs are exactly the same as in the single domain case (see (5.24)), while the D(

operator in (;R1, GR2, and D1 is replaced by D2 k defined in (5.3(.t). Strict and strong stability of (5.38)
follows if

(5.46) IT = ll7'D,, (EP, + P,_E)II" _< 0.

Because D _> 0, we need EP, + P,E < O. []

Remark, Because P,i > 0, E < 0 with the first and last r elements in E being constants would satisfy

condition (5.46).

6. Numerical experiments. In the calculations below, we have used the fourth- and sixth-order

schemes rel)orte(l in [17] in space and a five-stage fourth-order RK scheme [::12] in time.
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FIG. ,L1. l_stabilitg due to vanishing wav_ sp_ed and.fluJ'int_r.fac_ conditions.

6.1. Vanishing wave speed. For pro|)lems with a realistic geometry, one will frequently encounter zero

wave speed somewhere in the field due to the variation of the metric coefficients, the variable coefficients, or

(for nonlinear problems) tire solution. This difficulty (see Section 4.3.2) particularly severe in one dimension,

is exemplified in the calculation of Burger's equation shown in Figure 6.1.

The instability that develops close to zero wave speed when using a penalty on the fluxes at the interfaces

is evident. With interface conditions applied on the variable instead of the fluxes, the instability disappears.

Also, if one scales the problenl such that l: varies between 1 arm 3 instead of 0 and 2 one can use flux

interface conditions without any sign of instabilities. This anomalous behavior associated wilh a vanishing

wave speed oc<'urs with other mmwrical schemes, and is typically suppressed I)y adding dissipation (e.g. the

"Entrolu fix" used with Roe solvers).

6.2. Error growth due to varying coefficients. (!onsidor lhe following 11) test protdern,

,t+F,. = O. [.r,:q]E_2. t>O
(<i.]) " -

on the 21) domain f2 = [.,', 9] E [0, l] × [0. I]. The variables, fluxes and initial dala are

(_._)
"'2 b( a") ,._, sin (27r.r)
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SYSTEM STABILITY: EIG ENVALU ES
X = [1 + (i-1)/(N-1)] a'pha

FIG. 6.2. The error in the growth rate.for different trans-formations.

The problem (6.1) is l-periodic in y and has

(6.3) ul(O,y,t) = c_u2(0, y,t),

as boundary conditions in the x-direction.

By introducing a 2D curvilinear mesh we obtain

J'u, + (F)_ + (G),, =
(6.4)

,,.(1, .q,t) = _u_(1, y, t),

f, [_,q]e_, 7-=0

where r = ,I_F,G = Jq_F and _ = [_,q] E [0,1] x [0, 1]. The problem (6.4) has the same boundary

conditions as (6.1).

6.2.1. The energy growth in 1D. The energy growth for the 1D (9 = 0, q._ = 0) version of (6.1)-(6.4)

with

(6.5) a=l+¢z, b=-l+_z, ,_=1, 3=v/(l+¢)/(1-_)

leads to II.llz = -ell,It -_. The growth rate -¢/2 corresponds l.o a single eigenvalue on t.he real axis in

the continuous spectrum. Figure 15.2 shows the error in the sixth-order numerical approximat.ion of t.his

eigenvalue for different transformations (a" = x(_)). Figure 6.3 shows the convergence (in an L_, sense) of the

seven eigenvalues with most accurately converged real parts. The convergence rate in both Figures 6.2 and
15.3 is al lea.st 6.
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FIG. 6.3. The error in the growth rate .for varying wave spe¢:ds.

Even though the resolved eigenvalues (and eigenvectors) converge at, the theoretical rate (see Figures 6.2-

6.3), there are unresolved eigenvahms and eigenvectors tha! can generate difficulties. In Figure 6.4, the least.

resolved eigenvector corresponds t.o an eigenvalue with a negative real part (-4.6529E-03) significantly lnore

to the right of the analytical value (-7.5000E-03) than coukt be expected by lhe order of the al)proximation.

These unresolved eigenvalues and eigenvectors may generate extra large energy growth, as shown in Figure

6.5. The growth varies with the initial condition. Note thai the extra energy growth for a uniform mesh

can be present only for varying coefficients because otherwise (-;bl I = (F, D,.U) - (D._F, l _) =_ O.

6.2.2. The energy growth in 2D. The energy growth for the 2I)continuous problems ((i.l), (6.4)

is identically zero with ( = 0 in (6.5); i.e.. the L._, norm of t.he solution remains COl|slant in time. In

the send-discrete case, the energy growth is given by (5.45) where (;R2 = DI = 0 and the introdu('tion of

boundary conditions (BT/) and interface conditions (1T) leads t.o damping. Possil)le error 'growth, see (5. l li),

is l)rovided by,

(6.(i) (;U 1 = -[([_, D e it) - (Dee', F)] - [(_'. D,,(;) - ( D,, U. (;)]

only. For a linear mapping where the metric coefficients are constants (see Figure 6.6) we ol)tain I)_F =

DeAll' = A_D_[ _,D,j(; = D,_A,_,I' = A,,D,_I _, which yields (;F_I = 0. The error growth is shown in Figure

6.7. The calculat.ions are fourth-order accurate in time. Note lhal. there is an absolute I)ound on the error.

In a nonlinear mal)l)ing (see Figure 6.8) the/ruJ|cal.ioli errors in the metric calculation, and consequently

also in the cah'ulalion of the fluxes, lea(Is to (;RI:_ 0, which in turn ('all gellerale error growth (see Figure
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FIG. 6.4. EigeT_vectors related to two most and least resolved eigent,alues.

6.9). These calculations also are fourth-order accurate in time. Note tile enormous time scale in Figures 6.7,

and 6.9.

6.3. Navier-Stokes calculations. V_% consider here a 1D viscous shock propagating in accordance

with a Mach number of 2.0 and a Reynolds number 150 over a 2D domain. The exact solution of the

Navier-Stokes equation for this case can be found in [33]. At the artificial boundaries, including the circular

region in the middle, we impose flux boundary conditions by using the penalty forlnulatiou on the fluxes

with exact, data from the analytical solution. At the interfaces we impose interface conditions by using the

penalty formulation on the variables.

In Figure 6.10, the density and grid for the propagating shock is shown. The shock travels from the lower

left. corner to the upper right corner and has almost passed out of the computational domain that consists of

12 blocks. The sixth order scheme and 24 gridpoints were used in each sub-donlain. The local density errors

are shown in Figure 6.11. The grid refinement study in Table 6.3 indicate between fifth- and sixth-order

accuracy in an L, norm, consistent with the theory in [34], [35], since we have fifth order accuracy at the

boundaries and interfaces (see (3.4)) and relatively coarse grids.

7. Summary and conclusions. We have analyzed boundary and interface conditions for high or-

der finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The

investigation fbcused on the effect of variable coefficients.

A problem with a norm as a function of the ,lacobiall was analyzed. Boundary and interface conditions
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FIG. 6.5. E:rtra growth due to unresolved .features and initial conditions.

"]'ABLE 6.1

Twelve subdornain.s, sixth-order explicit: CFL = O.:_L

Wave speed 49/65 65/97 97/129 129/1 .():l

-0.25 -4.610 -4.640

I).00 -5.115 -4..()86

0.25 -5.155 -5.253

0.50 -5.331 -5.401

0.75 -5.523 -5.514

l.O0 -5.635 -5.622

average -5.22_ -5.236

-4.722 -1.722

-4.538 -4.657

-5.179 -4.952

-5.4{i7 -5.327

-5.590 -5.565

-5.659 -5.71.0

-5.193 -5.196

ill both flux and variable formulations have been investigaled. Flux I)oundary conditions lea(l to energy

estimales whereas flux inlerface conditions lead t,o (lifl:icullies if the wave speed approaches zero.

A new and simplified so called Q-formulation of lhe pel|alty method was (lerived a! interfaces. The

Q-fornmlation simplifies and extends the formula!ion and implement ation of derivative ('onditions in 1)oth

one and two dimensions at interfaces.

It was showll that varying coelticients can cause llllbounded error growt]l via the truncation errors

eV(ql though t lw I)oundary and interface conditions are imph'mented in a stable and (tissil)ative way. The

error growth may be large due 1o unresolved fealures in the solution. Numerical calculations confirmed lhe
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theoretical conclusions.
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